Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Biomed Eng ; 6(8): 992-1003, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35986181

RESUMEN

Pathogenic autoreactive antibodies that may be associated with life-threatening coronavirus disease 2019 (COVID-19) remain to be identified. Here, we show that self-assembled genome-scale libraries of full-length proteins covalently coupled to unique DNA barcodes for analysis by sequencing can be used for the unbiased identification of autoreactive antibodies in plasma samples. By screening 11,076 DNA-barcoded proteins expressed from a sequence-verified human ORFeome library, the method, which we named MIPSA (for Molecular Indexing of Proteins by Self-Assembly), allowed us to detect circulating neutralizing type-I and type-III interferon (IFN) autoantibodies in five plasma samples from 55 patients with life-threatening COVID-19. In addition to identifying neutralizing type-I IFN-α and IFN-ω autoantibodies and other previously known autoreactive antibodies in patient plasma, MIPSA enabled the detection of as yet unidentified neutralizing type-III anti-IFN-λ3 autoantibodies that were not seen in healthy plasma samples or in convalescent plasma from ten non-hospitalized individuals with COVID-19. The low cost and simple workflow of MIPSA will facilitate unbiased high-throughput analyses of protein-antibody, protein-protein and protein-small-molecule interactions.


Asunto(s)
Autoanticuerpos , COVID-19 , COVID-19/terapia , Biblioteca de Genes , Humanos , Inmunización Pasiva , Interferón-alfa , Sueroterapia para COVID-19
2.
Immunity ; 55(6): 1051-1066.e4, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35649416

RESUMEN

Microbial exposures are crucial environmental factors that impact healthspan by sculpting the immune system and microbiota. Antibody profiling via Phage ImmunoPrecipitation Sequencing (PhIP-Seq) provides a high-throughput, cost-effective approach for detecting exposure and response to microbial protein products. We designed and constructed a library of 95,601 56-amino acid peptide tiles spanning 14,430 proteins with "toxin" or "virulence factor" keyword annotations. We used PhIP-Seq to profile the antibodies of ∼1,000 individuals against this "ToxScan" library. In addition to enumerating immunodominant antibody epitopes, we studied the age-dependent stability of the ToxScan profile and used a genome-wide association study to find that the MHC-II locus modulates bacterial epitope selection. We detected previously described anti-flagellin antibody responses in a Crohn's disease cohort and identified an association between anti-flagellin antibodies and juvenile dermatomyositis. PhIP-Seq with the ToxScan library is thus an effective tool for studying the environmental determinants of health and disease at cohort scale.


Asunto(s)
Bacteriófagos , Biblioteca de Péptidos , Secuencia de Aminoácidos , Anticuerpos , Formación de Anticuerpos , Bacteriófagos/genética , Estudio de Asociación del Genoma Completo , Humanos , Epítopos Inmunodominantes , Prevalencia , Factores de Virulencia/genética
3.
EBioMedicine ; 75: 103747, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34922324

RESUMEN

BACKGROUND: Comprehensive characterization of exposures and immune responses to viral infections is critical to a basic understanding of human health and disease. We previously developed the VirScan system, a programmable phage-display technology for profiling antibody binding to a library of peptides designed to span the human virome. Previous VirScan analytical approaches did not carefully account for antibody cross-reactivity among sequences shared by related viruses or for the disproportionate representation of individual viruses in the library. METHODS: Here we present the AntiViral Antibody Response Deconvolution Algorithm (AVARDA), a multi-module software package for analyzing VirScan datasets. AVARDA provides a probabilistic assessment of infection with species-level resolution by considering sequence alignment of all library peptides to each other and to all human viruses. We employed AVARDA to analyze VirScan data from a cohort of encephalitis patients with either known viral infections or undiagnosed etiologies. We further assessed AVARDA's utility in associating viral infection with type 1 diabetes and lupus. FINDINGS: By comparing acute and convalescent sera, AVARDA successfully confirmed or detected encephalitis-associated responses to human herpesviruses 1, 3, 4, 5, and 6, improving the rate of diagnosing viral encephalitis in this cohort by 44%. AVARDA analyses of VirScan data from the type 1 diabetes and lupus cohorts implicated enterovirus and herpesvirus infections, respectively. INTERPRETATION: AVARDA, in combination with VirScan and other pan-pathogen serological techniques, is likely to find broad utility in the epidemiology and diagnosis of infectious diseases. FUNDING: This work was made possible by support from the National Institutes of Health (NIH), the US Army Research Office, the Singapore Infectious Diseases Initiative (SIDI), the Singapore Ministry of Health's National Medical Research Council (NMRC) and the Singapore National Research Foundation (NRF).


Asunto(s)
Viroma , Virosis , Anticuerpos Antivirales , Antígenos Virales , Epítopos , Humanos , Estados Unidos , Virosis/diagnóstico
4.
Front Immunol ; 12: 740395, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512672

RESUMEN

Introduction: Low HIV viral load is associated with delayed disease progression and reduced HIV transmission. HIV controllers suppress viral load to low levels in the absence of antiretroviral treatment (ART). We used an antibody profiling system, VirScan, to compare antibody reactivity and specificity in HIV controllers, non-controllers with treatment-induced viral suppression, and viremic non-controllers. Methods: The VirScan library contains 3,384 phage-displayed peptides spanning the HIV proteome. Antibody reactivity to these peptides was measured in plasma from a Discovery Cohort that included 13 elite controllers, 27 viremic controllers, 12 viremic non-controllers, and 21 non-controllers who were virally suppressed on ART. Antibody reactivity to selected peptides was also assessed in an independent cohort of 29 elite controllers and 37 non-controllers who were virally suppressed on ART (Validation Cohort) and in a longitudinal cohort of non-controllers. Results: In the Discovery Cohort, 62 peptides were preferentially targeted in HIV controllers compared to non-controllers who were virally suppressed on ART. These specificities were not significantly different when comparing controllers versus viremic non-controllers. Aggregate reactivity to these peptides was also high in elite controllers from the independent Validation Cohort. The 62 peptides formed seven clusters of homologous epitopes in env, gag, integrase, and vpu. Reactivity to one of these clusters located in gag p17 was inversely correlated with viral load set point in an independent cohort of non-controllers. Conclusions: Antibody reactivity was low in non-controllers suppressed on ART, but remained high in viremic controllers despite viral suppression. Antibodies in controllers and viremic non-controllers were directed against epitopes in diverse HIV proteins; higher reactivity against p17 peptides was associated with lower viral load set point. Further studies are needed to determine if these antibodies play a role in regulation of HIV viral load.


Asunto(s)
Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH no-Progresivos , VIH-1/fisiología , Adulto , Antirretrovirales/uso terapéutico , Mapeo Epitopo , Epítopos/genética , Epítopos/inmunología , Femenino , Antígenos VIH/genética , Antígenos VIH/inmunología , Infecciones por VIH/tratamiento farmacológico , Humanos , Masculino , Biblioteca de Péptidos , Carga Viral , Adulto Joven , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/inmunología
5.
EBioMedicine ; 71: 103506, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34481243

RESUMEN

BACKGROUND: Post-translational modifications (PTMs) on proteins can be targeted by antibodies associated with autoimmunity. Despite a growing appreciation for their intrinsic role in disease, there is a lack of highly multiplexed serological assays to characterize the fine specificities of PTM-directed autoantibodies. METHODS: In this study, we used the programmable phage display technology, Phage ImmunoPrecipitation Sequencing (PhIP-Seq), to profile rheumatoid arthritis (RA) associated anti-citrullinated protein antibody (ACPA) reactivities. FINDINGS: Using both unmodified and peptidylarginine deiminase (PAD)-modified phage display libraries consisting of ~250,000 overlapping 90 amino acid peptide tiles spanning the human proteome, PTM PhIP-Seq robustly identified antibodies to citrulline-dependent epitopes. INTERPRETATION: PTM PhIP-Seq was used to quantify key differences among RA patients, including PAD isoform specific ACPA profiles, and thus represents a powerful tool for proteome-scale antibody-binding analyses. FUNDING: This research is based upon work supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA). The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of ODNI, IARPA, or the US Government. The US Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein. This study was made possible by a National Institute of General Medical Sciences (NIGMS) grant R01 GM136724 (HBL). MFK was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) grant T32AR048522. ED was supported by the Rheumatology Research Foundation.


Asunto(s)
Artritis Reumatoide/inmunología , Autoanticuerpos/inmunología , Citrulinación , Biblioteca de Péptidos , Epítopos/química , Epítopos/inmunología , Humanos , Proteoma/química , Proteoma/inmunología
6.
bioRxiv ; 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33688651

RESUMEN

Unbiased antibody profiling can identify the targets of an immune reaction. A number of likely pathogenic autoreactive antibodies have been associated with life-threatening SARS-CoV-2 infection; yet, many additional autoantibodies likely remain unknown. Here we present Molecular Indexing of Proteins by Self Assembly (MIPSA), a technique that produces ORFeome-scale libraries of proteins covalently coupled to uniquely identifying DNA barcodes for analysis by sequencing. We used MIPSA to profile circulating autoantibodies from 55 patients with severe COVID-19 against 11,076 DNA-barcoded proteins of the human ORFeome library. MIPSA identified previously known autoreactivities, and also detected undescribed neutralizing interferon lambda 3 (IFN-λ3) autoantibodies. At-risk individuals with anti- IFN-λ3 antibodies may benefit from interferon supplementation therapies, such as those currently undergoing clinical evaluation.

7.
Stat Med ; 40(11): 2604-2612, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33660319

RESUMEN

Accurate incidence estimation of HIV infection from cross-sectional biomarker data is crucial for monitoring the epidemic and determining the impact of HIV prevention interventions. A key feature of cross-sectional incidence testing methods is the mean window period, defined as the average duration that infected individuals are classified as recently infected. Two assays available for cross-sectional incidence estimation, the BED capture immunoassay, and the Limiting Antigen (LAg) Avidity assay, measure a general characteristic of antibody response; performance of these assays can be affected and biased by factors such as viral suppression, resulting in sample misclassification and overestimation of HIV incidence. As availability and use of antiretroviral treatment increase worldwide, algorithms that do not include HIV viral load and are not impacted by viral suppression are needed for cross-sectional HIV incidence estimation. Using a phage display system to quantify antibody binding to over 3300 HIV peptides, we present a classifier based on top scoring peptide pairs that identifies recent infections using HIV antibody responses alone. Based on plasma samples from individuals with known dates of seroconversion, we estimated the mean window period for our classifier to be 217 days (95% confidence interval 183 to 257 days), compared to the estimated mean window period for the LAg-Avidity protocol of 106 days (76 to 146 days). Moreover, each of the four peptide pairs correctly classified more of the recent samples than the LAg-Avidity assay alone at the same classification accuracy for non-recent samples.


Asunto(s)
Infecciones por VIH , VIH-1 , Estudios Transversales , Humanos , Técnicas para Inmunoenzimas , Incidencia , Carga Viral
8.
J Clin Invest ; 131(7)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33571169

RESUMEN

SARS-CoV-2 (CoV2) antibody therapies, including COVID-19 convalescent plasma (CCP), monoclonal antibodies, and hyperimmune globulin, are among the leading treatments for individuals with early COVID-19 infection. The functionality of convalescent plasma varies greatly, but the association of antibody epitope specificities with plasma functionality remains uncharacterized. We assessed antibody functionality and reactivities to peptides across the CoV2 and the 4 endemic human coronavirus (HCoV) genomes in 126 CCP donations. We found strong correlation between plasma functionality and polyclonal antibody targeting of CoV2 spike protein peptides. Antibody reactivity to many HCoV spike peptides also displayed strong correlation with plasma functionality, including pan-coronavirus cross-reactive epitopes located in a conserved region of the fusion peptide. After accounting for antibody cross-reactivity, we identified an association between greater alphacoronavirus NL63 antibody responses and development of highly neutralizing antibodies against CoV2. We also found that plasma preferentially reactive to the CoV2 spike receptor binding domain (RBD), versus the betacoronavirus HKU1 RBD, had higher neutralizing titer. Finally, we developed a 2-peptide serosignature that identifies plasma donations with high anti-spike titer, but that suffer from low neutralizing activity. These results suggest that analysis of coronavirus antibody fine specificities may be useful for selecting desired therapeutics and understanding the complex immune responses elicited by CoV2 infection.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/inmunología , COVID-19/terapia , COVID-19/virología , Coronavirus/inmunología , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/sangre , Especificidad de Anticuerpos , Coronavirus/clasificación , Coronavirus/genética , Reacciones Cruzadas , Enfermedades Endémicas , Genoma Viral , Humanos , Inmunización Pasiva , Epítopos Inmunodominantes/química , Epítopos Inmunodominantes/genética , Epítopos Inmunodominantes/inmunología , Modelos Moleculares , Pandemias , SARS-CoV-2/genética , Especificidad de la Especie , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Sueroterapia para COVID-19
9.
Nat Commun ; 12(1): 379, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33483508

RESUMEN

Allergic reactions occur when IgE molecules become crosslinked by antigens such as food proteins. Here we create the 'AllerScan' programmable phage display system to characterize the binding specificities of anti-allergen IgG and IgE antibodies in serum against thousands of allergenic proteins from hundreds of organisms at peptide resolution. Using AllerScan, we identify robust anti-wheat IgE reactivities in wheat allergic individuals but not in wheat-sensitized individuals. Meanwhile, a key wheat epitope in alpha purothionin elicits dominant IgE responses among allergic patients, and frequent IgG responses among sensitized and non-allergic patients. A double-blind, placebo-controlled trial shows that alpha purothionin reactivity, among others, is strongly modulated by oral immunotherapy in tolerized individuals. AllerScan may thus serve as a high-throughput platform for unbiased analysis of anti-allergen antibody specificities.


Asunto(s)
Alérgenos/inmunología , Anticuerpos/inmunología , Epítopos/inmunología , Biblioteca de Péptidos , Hipersensibilidad al Trigo/inmunología , Adolescente , Adulto , Alérgenos/genética , Anticuerpos/sangre , Péptidos Catiónicos Antimicrobianos/inmunología , Niño , Preescolar , Femenino , Humanos , Hipersensibilidad/inmunología , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Proteínas de Plantas/inmunología , Adulto Joven
10.
Cell Syst ; 11(4): 375-381.e4, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33099407

RESUMEN

Endopeptidases catalyze the internal cleavage of proteins, playing pivotal roles in protein turnover, substrate maturation, and the activation of signaling cascades. A broad range of biological functions in health and disease are controlled by proteases, yet assays to characterize their activities at a proteomic scale do not exist. To address this unmet need, we developed Sensing EndoPeptidase Activity via Release and recapture using flAnking Tag Epitopes (SEPARATE), which uses a monovalent phage display of the human proteome at a 90-aa peptide resolution. We demonstrate that SEPARATE is compatible with several human proteases from distinct catalytic classes, including caspase-1, ADAM17, and thrombin. Both well-characterized and newly identified substrates of these enzymes were detected in the assay. SEPARATE was used to discover a non-canonical caspase-1 substrate, the E3 ubiquitin ligase HUWE1, a key mediator of apoptotic cell death. SEPARATE enables efficient, unbiased assessment of endopeptidase activity by using a phage-displayed proteome. A record of this paper's Transparent Peer Review process is included in the Supplemental Information.


Asunto(s)
Técnicas de Visualización de Superficie Celular/métodos , Péptido Hidrolasas/metabolismo , Péptidos/análisis , Proteómica/métodos , Proteína ADAM17/metabolismo , Caspasa 1/metabolismo , Humanos , Biblioteca de Péptidos , Péptidos/química , Proteolisis , Proteoma/metabolismo , Especificidad por Sustrato , Células THP-1 , Trombina/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
11.
Science ; 370(6520)2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-32994364

RESUMEN

Understanding humoral responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for improving diagnostics, therapeutics, and vaccines. Deep serological profiling of 232 coronavirus disease 2019 (COVID-19) patients and 190 pre-COVID-19 era controls using VirScan revealed more than 800 epitopes in the SARS-CoV-2 proteome, including 10 epitopes likely recognized by neutralizing antibodies. Preexisting antibodies in controls recognized SARS-CoV-2 ORF1, whereas only COVID-19 patient antibodies primarily recognized spike protein and nucleoprotein. A machine learning model trained on VirScan data predicted SARS-CoV-2 exposure history with 99% sensitivity and 98% specificity; a rapid Luminex-based diagnostic was developed from the most discriminatory SARS-CoV-2 peptides. Individuals with more severe COVID-19 exhibited stronger and broader SARS-CoV-2 responses, weaker antibody responses to prior infections, and higher incidence of cytomegalovirus and herpes simplex virus 1, possibly influenced by demographic covariates. Among hospitalized patients, males produce stronger SARS-CoV-2 antibody responses than females.


Asunto(s)
COVID-19/inmunología , Mapeo Epitopo , Epítopos/inmunología , SARS-CoV-2/inmunología , Índice de Severidad de la Enfermedad , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Formación de Anticuerpos , COVID-19/sangre , Prueba Serológica para COVID-19 , Reacciones Cruzadas , Microscopía por Crioelectrón , Epítopos/química , Epítopos/genética , Femenino , Humanos , Masculino , Conformación Proteica , Seroconversión
12.
Cell Rep ; 27(5): 1422-1433.e4, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31042470

RESUMEN

This study evaluates HIV antibody responses and their evolution during the course of HIV infection. A phage display system is used to characterize antibody binding to >3,300 HIV peptides in 57 adults with early- to late-stage infection. We find that the number of unique epitopes targeted ("antibody breadth") increases early in infection and then stabilizes or declines. A decline in antibody breadth 9 months to 2 years after infection is associated with subsequent antiretroviral treatment (ART) initiation, and a faster decline in antibody breadth is associated with a shorter time to ART initiation. We identify 266 peptides with increasing antibody reactivity over time and 43 peptides with decreasing reactivity over time. These data are used to design a prototype four-peptide "serosignature" to predict duration of HIV infection. We also demonstrate that epitope engineering can be used to optimize peptide binding properties for applications such as cross-sectional HIV incidence estimation.


Asunto(s)
Especificidad de Anticuerpos , Anticuerpos Anti-VIH/inmunología , Seropositividad para VIH/inmunología , Adulto , Fármacos Anti-VIH/uso terapéutico , Linfocitos T CD4-Positivos/inmunología , Epítopos/inmunología , Femenino , Antígenos VIH/inmunología , Seropositividad para VIH/tratamiento farmacológico , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...